[OE-core] [dizzy] [PATCH 1/1] python: Add support for aarch64 for ctypes module

Tudor Florea Tudor.Florea at enea.com
Tue Mar 10 00:24:35 UTC 2015


Ping.

> -----Original Message-----
> From: Tudor Florea [mailto:tudor.florea at enea.com]
> Sent: Wednesday, March 04, 2015 17:04
> To: openembedded-core at lists.openembedded.org
> Cc: Tudor Florea
> Subject: [dizzy] [PATCH 1/1] python: Add support for aarch64 for ctypes
> module
> 
> Python have its own version of libffi used for ctypes module.
> libffi 3.0.10 contained in original source of Python-2.7.3 does not have
> support for aarch64 architecture.
> This is patch is backport support for aarch64 from libffi 3.1
> ---
>  .../python/python/ctypes-libffi-aarch64.patch      |   22 +
>  .../python/python/libffi-aarch64.patch             | 1608
> ++++++++++++++++++++
>  meta/recipes-devtools/python/python_2.7.3.bb       |    2 +
>  3 files changed, 1632 insertions(+)
>  create mode 100644 meta/recipes-devtools/python/python/ctypes-libffi-
> aarch64.patch
>  create mode 100644 meta/recipes-devtools/python/python/libffi-
> aarch64.patch
> 
> diff --git a/meta/recipes-devtools/python/python/ctypes-libffi-
> aarch64.patch b/meta/recipes-devtools/python/python/ctypes-libffi-
> aarch64.patch
> new file mode 100644
> index 0000000..7349c7b
> --- /dev/null
> +++ b/meta/recipes-devtools/python/python/ctypes-libffi-aarch64.patch
> @@ -0,0 +1,22 @@
> +Add missing fficonfig.py bits for aarch64
> +
> +# HG changeset patch
> +# User Andreas Schwab <schwab at suse.de>
> +# Date 1367276434 -7200
> +# Node ID 05e8999a3901b4853e60d6701510e9b3dd54a7f3
> +# Parent  84cef4f1999ad9e362694cdac2f65f0981e3d5d0
> +
> +Upstream-Status: Backport
> +Signed-off-by: Tudor Florea <tudor.florea at enea.com>
> +
> +diff -r 84cef4f1999a -r 05e8999a3901 Modules/_ctypes/libffi/fficonfig.py.in
> +--- a/Modules/_ctypes/libffi/fficonfig.py.in	Mon Apr 29 16:09:39 2013 -
> 0400
> ++++ b/Modules/_ctypes/libffi/fficonfig.py.in	Tue Apr 30 01:00:34 2013
> +0200
> +@@ -28,6 +28,7 @@
> +     'PA': ['src/pa/linux.S', 'src/pa/ffi.c'],
> +     'PA_LINUX': ['src/pa/linux.S', 'src/pa/ffi.c'],
> +     'PA_HPUX': ['src/pa/hpux32.S', 'src/pa/ffi.c'],
> ++    'AARCH64' : ['src/aarch64/ffi.c', 'src/aarch64/sysv.S'],
> + }
> +
> + ffi_sources += ffi_platforms['@TARGET@']
> diff --git a/meta/recipes-devtools/python/python/libffi-aarch64.patch
> b/meta/recipes-devtools/python/python/libffi-aarch64.patch
> new file mode 100644
> index 0000000..5581922
> --- /dev/null
> +++ b/meta/recipes-devtools/python/python/libffi-aarch64.patch
> @@ -0,0 +1,1608 @@
> +Add support for aarch64 for ctypes module
> +
> +Python have its own version of libffi used for ctypes module.
> +libffi 3.0.10 contained in original source of Python-2.7.3 does not have
> +support for aarch64 architecture.
> +This is patch is backport support for aarch64 from libffi 3.1
> +
> +Upstream-Status: Backport
> +Signed-off-by: Tudor Florea <tudor.florea at enea.com>
> +
> +diff -ruN Python-2.7.3.orig/Modules/_ctypes/libffi/configure.ac Python-
> 2.7.3/Modules/_ctypes/libffi/configure.ac
> +--- Python-2.7.3.orig/Modules/_ctypes/libffi/configure.ac	2015-02-27
> 23:15:16.118393178 +0100
> ++++ Python-2.7.3/Modules/_ctypes/libffi/configure.ac	2015-02-27
> 23:51:03.351556903 +0100
> +@@ -44,6 +44,10 @@
> +
> + TARGETDIR="unknown"
> + case "$host" in
> ++  aarch64*-*-*)
> ++	TARGET=AARCH64; TARGETDIR=aarch64
> ++	;;
> ++
> +   alpha*-*-*)
> + 	TARGET=ALPHA; TARGETDIR=alpha;
> + 	# Support 128-bit long double, changeable via command-line switch.
> +@@ -195,6 +199,7 @@
> + AM_CONDITIONAL(POWERPC_AIX, test x$TARGET = xPOWERPC_AIX)
> + AM_CONDITIONAL(POWERPC_DARWIN, test x$TARGET =
> xPOWERPC_DARWIN)
> + AM_CONDITIONAL(POWERPC_FREEBSD, test x$TARGET =
> xPOWERPC_FREEBSD)
> ++AM_CONDITIONAL(AARCH64, test x$TARGET = xAARCH64)
> + AM_CONDITIONAL(ARM, test x$TARGET = xARM)
> + AM_CONDITIONAL(AVR32, test x$TARGET = xAVR32)
> + AM_CONDITIONAL(LIBFFI_CRIS, test x$TARGET = xLIBFFI_CRIS)
> +diff -ruN Python-2.7.3.orig/Modules/_ctypes/libffi/src/aarch64/ffi.c
> Python-2.7.3/Modules/_ctypes/libffi/src/aarch64/ffi.c
> +--- Python-2.7.3.orig/Modules/_ctypes/libffi/src/aarch64/ffi.c	1970-
> 01-01 01:00:00.000000000 +0100
> ++++ Python-2.7.3/Modules/_ctypes/libffi/src/aarch64/ffi.c	2014-04-25
> 19:45:13.000000000 +0200
> +@@ -0,0 +1,1168 @@
> ++/* Copyright (c) 2009, 2010, 2011, 2012 ARM Ltd.
> ++
> ++Permission is hereby granted, free of charge, to any person obtaining
> ++a copy of this software and associated documentation files (the
> ++``Software''), to deal in the Software without restriction, including
> ++without limitation the rights to use, copy, modify, merge, publish,
> ++distribute, sublicense, and/or sell copies of the Software, and to
> ++permit persons to whom the Software is furnished to do so, subject to
> ++the following conditions:
> ++
> ++The above copyright notice and this permission notice shall be
> ++included in all copies or substantial portions of the Software.
> ++
> ++THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
> ++EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
> OF
> ++MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
> NONINFRINGEMENT.
> ++IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
> ANY
> ++CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
> CONTRACT,
> ++TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH
> THE
> ++SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.  */
> ++
> ++#include <stdio.h>
> ++
> ++#include <ffi.h>
> ++#include <ffi_common.h>
> ++
> ++#include <stdlib.h>
> ++
> ++/* Stack alignment requirement in bytes */
> ++#if defined (__APPLE__)
> ++#define AARCH64_STACK_ALIGN 1
> ++#else
> ++#define AARCH64_STACK_ALIGN 16
> ++#endif
> ++
> ++#define N_X_ARG_REG 8
> ++#define N_V_ARG_REG 8
> ++
> ++#define AARCH64_FFI_WITH_V (1 << AARCH64_FFI_WITH_V_BIT)
> ++
> ++union _d
> ++{
> ++  UINT64 d;
> ++  UINT32 s[2];
> ++};
> ++
> ++struct call_context
> ++{
> ++  UINT64 x [AARCH64_N_XREG];
> ++  struct
> ++  {
> ++    union _d d[2];
> ++  } v [AARCH64_N_VREG];
> ++};
> ++
> ++#if defined (__clang__) && defined (__APPLE__)
> ++extern void
> ++sys_icache_invalidate (void *start, size_t len);
> ++#endif
> ++
> ++static inline void
> ++ffi_clear_cache (void *start, void *end)
> ++{
> ++#if defined (__clang__) && defined (__APPLE__)
> ++	sys_icache_invalidate (start, (char *)end - (char *)start);
> ++#elif defined (__GNUC__)
> ++	__builtin___clear_cache (start, end);
> ++#else
> ++#error "Missing builtin to flush instruction cache"
> ++#endif
> ++}
> ++
> ++static void *
> ++get_x_addr (struct call_context *context, unsigned n)
> ++{
> ++  return &context->x[n];
> ++}
> ++
> ++static void *
> ++get_s_addr (struct call_context *context, unsigned n)
> ++{
> ++#if defined __AARCH64EB__
> ++  return &context->v[n].d[1].s[1];
> ++#else
> ++  return &context->v[n].d[0].s[0];
> ++#endif
> ++}
> ++
> ++static void *
> ++get_d_addr (struct call_context *context, unsigned n)
> ++{
> ++#if defined __AARCH64EB__
> ++  return &context->v[n].d[1];
> ++#else
> ++  return &context->v[n].d[0];
> ++#endif
> ++}
> ++
> ++static void *
> ++get_v_addr (struct call_context *context, unsigned n)
> ++{
> ++  return &context->v[n];
> ++}
> ++
> ++/* Return the memory location at which a basic type would reside
> ++   were it to have been stored in register n.  */
> ++
> ++static void *
> ++get_basic_type_addr (unsigned short type, struct call_context *context,
> ++		     unsigned n)
> ++{
> ++  switch (type)
> ++    {
> ++    case FFI_TYPE_FLOAT:
> ++      return get_s_addr (context, n);
> ++    case FFI_TYPE_DOUBLE:
> ++      return get_d_addr (context, n);
> ++#if FFI_TYPE_DOUBLE != FFI_TYPE_LONGDOUBLE
> ++    case FFI_TYPE_LONGDOUBLE:
> ++      return get_v_addr (context, n);
> ++#endif
> ++    case FFI_TYPE_UINT8:
> ++    case FFI_TYPE_SINT8:
> ++    case FFI_TYPE_UINT16:
> ++    case FFI_TYPE_SINT16:
> ++    case FFI_TYPE_UINT32:
> ++    case FFI_TYPE_SINT32:
> ++    case FFI_TYPE_INT:
> ++    case FFI_TYPE_POINTER:
> ++    case FFI_TYPE_UINT64:
> ++    case FFI_TYPE_SINT64:
> ++      return get_x_addr (context, n);
> ++    case FFI_TYPE_VOID:
> ++      return NULL;
> ++    default:
> ++      FFI_ASSERT (0);
> ++      return NULL;
> ++    }
> ++}
> ++
> ++/* Return the alignment width for each of the basic types.  */
> ++
> ++static size_t
> ++get_basic_type_alignment (unsigned short type)
> ++{
> ++  switch (type)
> ++    {
> ++    case FFI_TYPE_FLOAT:
> ++    case FFI_TYPE_DOUBLE:
> ++      return sizeof (UINT64);
> ++#if FFI_TYPE_DOUBLE != FFI_TYPE_LONGDOUBLE
> ++    case FFI_TYPE_LONGDOUBLE:
> ++      return sizeof (long double);
> ++#endif
> ++    case FFI_TYPE_UINT8:
> ++    case FFI_TYPE_SINT8:
> ++#if defined (__APPLE__)
> ++	  return sizeof (UINT8);
> ++#endif
> ++    case FFI_TYPE_UINT16:
> ++    case FFI_TYPE_SINT16:
> ++#if defined (__APPLE__)
> ++	  return sizeof (UINT16);
> ++#endif
> ++    case FFI_TYPE_UINT32:
> ++    case FFI_TYPE_INT:
> ++    case FFI_TYPE_SINT32:
> ++#if defined (__APPLE__)
> ++	  return sizeof (UINT32);
> ++#endif
> ++    case FFI_TYPE_POINTER:
> ++    case FFI_TYPE_UINT64:
> ++    case FFI_TYPE_SINT64:
> ++      return sizeof (UINT64);
> ++
> ++    default:
> ++      FFI_ASSERT (0);
> ++      return 0;
> ++    }
> ++}
> ++
> ++/* Return the size in bytes for each of the basic types.  */
> ++
> ++static size_t
> ++get_basic_type_size (unsigned short type)
> ++{
> ++  switch (type)
> ++    {
> ++    case FFI_TYPE_FLOAT:
> ++      return sizeof (UINT32);
> ++    case FFI_TYPE_DOUBLE:
> ++      return sizeof (UINT64);
> ++#if FFI_TYPE_DOUBLE != FFI_TYPE_LONGDOUBLE
> ++    case FFI_TYPE_LONGDOUBLE:
> ++      return sizeof (long double);
> ++#endif
> ++    case FFI_TYPE_UINT8:
> ++      return sizeof (UINT8);
> ++    case FFI_TYPE_SINT8:
> ++      return sizeof (SINT8);
> ++    case FFI_TYPE_UINT16:
> ++      return sizeof (UINT16);
> ++    case FFI_TYPE_SINT16:
> ++      return sizeof (SINT16);
> ++    case FFI_TYPE_UINT32:
> ++      return sizeof (UINT32);
> ++    case FFI_TYPE_INT:
> ++    case FFI_TYPE_SINT32:
> ++      return sizeof (SINT32);
> ++    case FFI_TYPE_POINTER:
> ++    case FFI_TYPE_UINT64:
> ++      return sizeof (UINT64);
> ++    case FFI_TYPE_SINT64:
> ++      return sizeof (SINT64);
> ++
> ++    default:
> ++      FFI_ASSERT (0);
> ++      return 0;
> ++    }
> ++}
> ++
> ++extern void
> ++ffi_call_SYSV (unsigned (*)(struct call_context *context, unsigned char *,
> ++			    extended_cif *),
> ++               struct call_context *context,
> ++               extended_cif *,
> ++               size_t,
> ++               void (*fn)(void));
> ++
> ++extern void
> ++ffi_closure_SYSV (ffi_closure *);
> ++
> ++/* Test for an FFI floating point representation.  */
> ++
> ++static unsigned
> ++is_floating_type (unsigned short type)
> ++{
> ++  return (type == FFI_TYPE_FLOAT || type == FFI_TYPE_DOUBLE
> ++	  || type == FFI_TYPE_LONGDOUBLE);
> ++}
> ++
> ++/* Test for a homogeneous structure.  */
> ++
> ++static unsigned short
> ++get_homogeneous_type (ffi_type *ty)
> ++{
> ++  if (ty->type == FFI_TYPE_STRUCT && ty->elements)
> ++    {
> ++      unsigned i;
> ++      unsigned short candidate_type
> ++	= get_homogeneous_type (ty->elements[0]);
> ++      for (i =1; ty->elements[i]; i++)
> ++	{
> ++	  unsigned short iteration_type = 0;
> ++	  /* If we have a nested struct, we must find its homogeneous type.
> ++	     If that fits with our candidate type, we are still
> ++	     homogeneous.  */
> ++	  if (ty->elements[i]->type == FFI_TYPE_STRUCT
> ++	      && ty->elements[i]->elements)
> ++	    {
> ++	      iteration_type = get_homogeneous_type (ty->elements[i]);
> ++	    }
> ++	  else
> ++	    {
> ++	      iteration_type = ty->elements[i]->type;
> ++	    }
> ++
> ++	  /* If we are not homogeneous, return FFI_TYPE_STRUCT.  */
> ++	  if (candidate_type != iteration_type)
> ++	    return FFI_TYPE_STRUCT;
> ++	}
> ++      return candidate_type;
> ++    }
> ++
> ++  /* Base case, we have no more levels of nesting, so we
> ++     are a basic type, and so, trivially homogeneous in that type.  */
> ++  return ty->type;
> ++}
> ++
> ++/* Determine the number of elements within a STRUCT.
> ++
> ++   Note, we must handle nested structs.
> ++
> ++   If ty is not a STRUCT this function will return 0.  */
> ++
> ++static unsigned
> ++element_count (ffi_type *ty)
> ++{
> ++  if (ty->type == FFI_TYPE_STRUCT && ty->elements)
> ++    {
> ++      unsigned n;
> ++      unsigned elems = 0;
> ++      for (n = 0; ty->elements[n]; n++)
> ++	{
> ++	  if (ty->elements[n]->type == FFI_TYPE_STRUCT
> ++	      && ty->elements[n]->elements)
> ++	    elems += element_count (ty->elements[n]);
> ++	  else
> ++	    elems++;
> ++	}
> ++      return elems;
> ++    }
> ++  return 0;
> ++}
> ++
> ++/* Test for a homogeneous floating point aggregate.
> ++
> ++   A homogeneous floating point aggregate is a homogeneous aggregate of
> ++   a half- single- or double- precision floating point type with one
> ++   to four elements.  Note that this includes nested structs of the
> ++   basic type.  */
> ++
> ++static int
> ++is_hfa (ffi_type *ty)
> ++{
> ++  if (ty->type == FFI_TYPE_STRUCT
> ++      && ty->elements[0]
> ++      && is_floating_type (get_homogeneous_type (ty)))
> ++    {
> ++      unsigned n = element_count (ty);
> ++      return n >= 1 && n <= 4;
> ++    }
> ++  return 0;
> ++}
> ++
> ++/* Test if an ffi_type is a candidate for passing in a register.
> ++
> ++   This test does not check that sufficient registers of the
> ++   appropriate class are actually available, merely that IFF
> ++   sufficient registers are available then the argument will be passed
> ++   in register(s).
> ++
> ++   Note that an ffi_type that is deemed to be a register candidate
> ++   will always be returned in registers.
> ++
> ++   Returns 1 if a register candidate else 0.  */
> ++
> ++static int
> ++is_register_candidate (ffi_type *ty)
> ++{
> ++  switch (ty->type)
> ++    {
> ++    case FFI_TYPE_VOID:
> ++    case FFI_TYPE_FLOAT:
> ++    case FFI_TYPE_DOUBLE:
> ++#if FFI_TYPE_DOUBLE != FFI_TYPE_LONGDOUBLE
> ++    case FFI_TYPE_LONGDOUBLE:
> ++#endif
> ++    case FFI_TYPE_UINT8:
> ++    case FFI_TYPE_UINT16:
> ++    case FFI_TYPE_UINT32:
> ++    case FFI_TYPE_UINT64:
> ++    case FFI_TYPE_POINTER:
> ++    case FFI_TYPE_SINT8:
> ++    case FFI_TYPE_SINT16:
> ++    case FFI_TYPE_SINT32:
> ++    case FFI_TYPE_INT:
> ++    case FFI_TYPE_SINT64:
> ++      return 1;
> ++
> ++    case FFI_TYPE_STRUCT:
> ++      if (is_hfa (ty))
> ++        {
> ++          return 1;
> ++        }
> ++      else if (ty->size > 16)
> ++        {
> ++          /* Too large. Will be replaced with a pointer to memory. The
> ++             pointer MAY be passed in a register, but the value will
> ++             not. This test specifically fails since the argument will
> ++             never be passed by value in registers. */
> ++          return 0;
> ++        }
> ++      else
> ++        {
> ++          /* Might be passed in registers depending on the number of
> ++             registers required. */
> ++          return (ty->size + 7) / 8 < N_X_ARG_REG;
> ++        }
> ++      break;
> ++
> ++    default:
> ++      FFI_ASSERT (0);
> ++      break;
> ++    }
> ++
> ++  return 0;
> ++}
> ++
> ++/* Test if an ffi_type argument or result is a candidate for a vector
> ++   register.  */
> ++
> ++static int
> ++is_v_register_candidate (ffi_type *ty)
> ++{
> ++  return is_floating_type (ty->type)
> ++	   || (ty->type == FFI_TYPE_STRUCT && is_hfa (ty));
> ++}
> ++
> ++/* Representation of the procedure call argument marshalling
> ++   state.
> ++
> ++   The terse state variable names match the names used in the AARCH64
> ++   PCS. */
> ++
> ++struct arg_state
> ++{
> ++  unsigned ngrn;                /* Next general-purpose register number. */
> ++  unsigned nsrn;                /* Next vector register number. */
> ++  size_t nsaa;                  /* Next stack offset. */
> ++
> ++#if defined (__APPLE__)
> ++  unsigned allocating_variadic;
> ++#endif
> ++};
> ++
> ++/* Initialize a procedure call argument marshalling state.  */
> ++static void
> ++arg_init (struct arg_state *state, size_t call_frame_size)
> ++{
> ++  state->ngrn = 0;
> ++  state->nsrn = 0;
> ++  state->nsaa = 0;
> ++
> ++#if defined (__APPLE__)
> ++  state->allocating_variadic = 0;
> ++#endif
> ++}
> ++
> ++/* Return the number of available consecutive core argument
> ++   registers.  */
> ++
> ++static unsigned
> ++available_x (struct arg_state *state)
> ++{
> ++  return N_X_ARG_REG - state->ngrn;
> ++}
> ++
> ++/* Return the number of available consecutive vector argument
> ++   registers.  */
> ++
> ++static unsigned
> ++available_v (struct arg_state *state)
> ++{
> ++  return N_V_ARG_REG - state->nsrn;
> ++}
> ++
> ++static void *
> ++allocate_to_x (struct call_context *context, struct arg_state *state)
> ++{
> ++  FFI_ASSERT (state->ngrn < N_X_ARG_REG);
> ++  return get_x_addr (context, (state->ngrn)++);
> ++}
> ++
> ++static void *
> ++allocate_to_s (struct call_context *context, struct arg_state *state)
> ++{
> ++  FFI_ASSERT (state->nsrn < N_V_ARG_REG);
> ++  return get_s_addr (context, (state->nsrn)++);
> ++}
> ++
> ++static void *
> ++allocate_to_d (struct call_context *context, struct arg_state *state)
> ++{
> ++  FFI_ASSERT (state->nsrn < N_V_ARG_REG);
> ++  return get_d_addr (context, (state->nsrn)++);
> ++}
> ++
> ++static void *
> ++allocate_to_v (struct call_context *context, struct arg_state *state)
> ++{
> ++  FFI_ASSERT (state->nsrn < N_V_ARG_REG);
> ++  return get_v_addr (context, (state->nsrn)++);
> ++}
> ++
> ++/* Allocate an aligned slot on the stack and return a pointer to it.  */
> ++static void *
> ++allocate_to_stack (struct arg_state *state, void *stack, size_t alignment,
> ++		   size_t size)
> ++{
> ++  void *allocation;
> ++
> ++  /* Round up the NSAA to the larger of 8 or the natural
> ++     alignment of the argument's type.  */
> ++  state->nsaa = ALIGN (state->nsaa, alignment);
> ++  state->nsaa = ALIGN (state->nsaa, alignment);
> ++#if defined (__APPLE__)
> ++  if (state->allocating_variadic)
> ++    state->nsaa = ALIGN (state->nsaa, 8);
> ++#else
> ++  state->nsaa = ALIGN (state->nsaa, 8);
> ++#endif
> ++
> ++  allocation = stack + state->nsaa;
> ++
> ++  state->nsaa += size;
> ++  return allocation;
> ++}
> ++
> ++static void
> ++copy_basic_type (void *dest, void *source, unsigned short type)
> ++{
> ++  /* This is necessary to ensure that basic types are copied
> ++     sign extended to 64-bits as libffi expects.  */
> ++  switch (type)
> ++    {
> ++    case FFI_TYPE_FLOAT:
> ++      *(float *) dest = *(float *) source;
> ++      break;
> ++    case FFI_TYPE_DOUBLE:
> ++      *(double *) dest = *(double *) source;
> ++      break;
> ++#if FFI_TYPE_DOUBLE != FFI_TYPE_LONGDOUBLE
> ++    case FFI_TYPE_LONGDOUBLE:
> ++      *(long double *) dest = *(long double *) source;
> ++      break;
> ++#endif
> ++    case FFI_TYPE_UINT8:
> ++      *(ffi_arg *) dest = *(UINT8 *) source;
> ++      break;
> ++    case FFI_TYPE_SINT8:
> ++      *(ffi_sarg *) dest = *(SINT8 *) source;
> ++      break;
> ++    case FFI_TYPE_UINT16:
> ++      *(ffi_arg *) dest = *(UINT16 *) source;
> ++      break;
> ++    case FFI_TYPE_SINT16:
> ++      *(ffi_sarg *) dest = *(SINT16 *) source;
> ++      break;
> ++    case FFI_TYPE_UINT32:
> ++      *(ffi_arg *) dest = *(UINT32 *) source;
> ++      break;
> ++    case FFI_TYPE_INT:
> ++    case FFI_TYPE_SINT32:
> ++      *(ffi_sarg *) dest = *(SINT32 *) source;
> ++      break;
> ++    case FFI_TYPE_POINTER:
> ++    case FFI_TYPE_UINT64:
> ++      *(ffi_arg *) dest = *(UINT64 *) source;
> ++      break;
> ++    case FFI_TYPE_SINT64:
> ++      *(ffi_sarg *) dest = *(SINT64 *) source;
> ++      break;
> ++    case FFI_TYPE_VOID:
> ++      break;
> ++
> ++    default:
> ++      FFI_ASSERT (0);
> ++    }
> ++}
> ++
> ++static void
> ++copy_hfa_to_reg_or_stack (void *memory,
> ++			  ffi_type *ty,
> ++			  struct call_context *context,
> ++			  unsigned char *stack,
> ++			  struct arg_state *state)
> ++{
> ++  unsigned elems = element_count (ty);
> ++  if (available_v (state) < elems)
> ++    {
> ++      /* There are insufficient V registers. Further V register allocations
> ++	 are prevented, the NSAA is adjusted (by allocate_to_stack ())
> ++	 and the argument is copied to memory at the adjusted NSAA.  */
> ++      state->nsrn = N_V_ARG_REG;
> ++      memcpy (allocate_to_stack (state, stack, ty->alignment, ty->size),
> ++	      memory,
> ++	      ty->size);
> ++    }
> ++  else
> ++    {
> ++      int i;
> ++      unsigned short type = get_homogeneous_type (ty);
> ++      for (i = 0; i < elems; i++)
> ++	{
> ++	  void *reg = allocate_to_v (context, state);
> ++	  copy_basic_type (reg, memory, type);
> ++	  memory += get_basic_type_size (type);
> ++	}
> ++    }
> ++}
> ++
> ++/* Either allocate an appropriate register for the argument type, or if
> ++   none are available, allocate a stack slot and return a pointer
> ++   to the allocated space.  */
> ++
> ++static void *
> ++allocate_to_register_or_stack (struct call_context *context,
> ++			       unsigned char *stack,
> ++			       struct arg_state *state,
> ++			       unsigned short type)
> ++{
> ++  size_t alignment = get_basic_type_alignment (type);
> ++  size_t size = alignment;
> ++  switch (type)
> ++    {
> ++    case FFI_TYPE_FLOAT:
> ++      /* This is the only case for which the allocated stack size
> ++	 should not match the alignment of the type.  */
> ++      size = sizeof (UINT32);
> ++      /* Fall through.  */
> ++    case FFI_TYPE_DOUBLE:
> ++      if (state->nsrn < N_V_ARG_REG)
> ++	return allocate_to_d (context, state);
> ++      state->nsrn = N_V_ARG_REG;
> ++      break;
> ++#if FFI_TYPE_DOUBLE != FFI_TYPE_LONGDOUBLE
> ++    case FFI_TYPE_LONGDOUBLE:
> ++      if (state->nsrn < N_V_ARG_REG)
> ++	return allocate_to_v (context, state);
> ++      state->nsrn = N_V_ARG_REG;
> ++      break;
> ++#endif
> ++    case FFI_TYPE_UINT8:
> ++    case FFI_TYPE_SINT8:
> ++    case FFI_TYPE_UINT16:
> ++    case FFI_TYPE_SINT16:
> ++    case FFI_TYPE_UINT32:
> ++    case FFI_TYPE_SINT32:
> ++    case FFI_TYPE_INT:
> ++    case FFI_TYPE_POINTER:
> ++    case FFI_TYPE_UINT64:
> ++    case FFI_TYPE_SINT64:
> ++      if (state->ngrn < N_X_ARG_REG)
> ++	return allocate_to_x (context, state);
> ++      state->ngrn = N_X_ARG_REG;
> ++      break;
> ++    default:
> ++      FFI_ASSERT (0);
> ++    }
> ++
> ++    return allocate_to_stack (state, stack, alignment, size);
> ++}
> ++
> ++/* Copy a value to an appropriate register, or if none are
> ++   available, to the stack.  */
> ++
> ++static void
> ++copy_to_register_or_stack (struct call_context *context,
> ++			   unsigned char *stack,
> ++			   struct arg_state *state,
> ++			   void *value,
> ++			   unsigned short type)
> ++{
> ++  copy_basic_type (
> ++	  allocate_to_register_or_stack (context, stack, state, type),
> ++	  value,
> ++	  type);
> ++}
> ++
> ++/* Marshall the arguments from FFI representation to procedure call
> ++   context and stack.  */
> ++
> ++static unsigned
> ++aarch64_prep_args (struct call_context *context, unsigned char *stack,
> ++		   extended_cif *ecif)
> ++{
> ++  int i;
> ++  struct arg_state state;
> ++
> ++  arg_init (&state, ALIGN(ecif->cif->bytes, 16));
> ++
> ++  for (i = 0; i < ecif->cif->nargs; i++)
> ++    {
> ++      ffi_type *ty = ecif->cif->arg_types[i];
> ++      switch (ty->type)
> ++	{
> ++	case FFI_TYPE_VOID:
> ++	  FFI_ASSERT (0);
> ++	  break;
> ++
> ++	/* If the argument is a basic type the argument is allocated to an
> ++	   appropriate register, or if none are available, to the stack.  */
> ++	case FFI_TYPE_FLOAT:
> ++	case FFI_TYPE_DOUBLE:
> ++#if FFI_TYPE_DOUBLE != FFI_TYPE_LONGDOUBLE
> ++	case FFI_TYPE_LONGDOUBLE:
> ++#endif
> ++	case FFI_TYPE_UINT8:
> ++	case FFI_TYPE_SINT8:
> ++	case FFI_TYPE_UINT16:
> ++	case FFI_TYPE_SINT16:
> ++	case FFI_TYPE_UINT32:
> ++	case FFI_TYPE_INT:
> ++	case FFI_TYPE_SINT32:
> ++	case FFI_TYPE_POINTER:
> ++	case FFI_TYPE_UINT64:
> ++	case FFI_TYPE_SINT64:
> ++	  copy_to_register_or_stack (context, stack, &state,
> ++				     ecif->avalue[i], ty->type);
> ++	  break;
> ++
> ++	case FFI_TYPE_STRUCT:
> ++	  if (is_hfa (ty))
> ++	    {
> ++	      copy_hfa_to_reg_or_stack (ecif->avalue[i], ty, context,
> ++					stack, &state);
> ++	    }
> ++	  else if (ty->size > 16)
> ++	    {
> ++	      /* If the argument is a composite type that is larger than 16
> ++		 bytes, then the argument has been copied to memory, and
> ++		 the argument is replaced by a pointer to the copy.  */
> ++
> ++	      copy_to_register_or_stack (context, stack, &state,
> ++					 &(ecif->avalue[i]),
> FFI_TYPE_POINTER);
> ++	    }
> ++	  else if (available_x (&state) >= (ty->size + 7) / 8)
> ++	    {
> ++	      /* If the argument is a composite type and the size in
> ++		 double-words is not more than the number of available
> ++		 X registers, then the argument is copied into consecutive
> ++		 X registers.  */
> ++	      int j;
> ++	      for (j = 0; j < (ty->size + 7) / 8; j++)
> ++		{
> ++		  memcpy (allocate_to_x (context, &state),
> ++			  &(((UINT64 *) ecif->avalue[i])[j]),
> ++			  sizeof (UINT64));
> ++		}
> ++	    }
> ++	  else
> ++	    {
> ++	      /* Otherwise, there are insufficient X registers. Further X
> ++		 register allocations are prevented, the NSAA is adjusted
> ++		 (by allocate_to_stack ()) and the argument is copied to
> ++		 memory at the adjusted NSAA.  */
> ++	      state.ngrn = N_X_ARG_REG;
> ++
> ++	      memcpy (allocate_to_stack (&state, stack, ty->alignment,
> ++					 ty->size), ecif->avalue + i, ty->size);
> ++	    }
> ++	  break;
> ++
> ++	default:
> ++	  FFI_ASSERT (0);
> ++	  break;
> ++	}
> ++
> ++#if defined (__APPLE__)
> ++      if (i + 1 == ecif->cif->aarch64_nfixedargs)
> ++	{
> ++	  state.ngrn = N_X_ARG_REG;
> ++	  state.nsrn = N_V_ARG_REG;
> ++
> ++	  state.allocating_variadic = 1;
> ++	}
> ++#endif
> ++    }
> ++
> ++  return ecif->cif->aarch64_flags;
> ++}
> ++
> ++ffi_status
> ++ffi_prep_cif_machdep (ffi_cif *cif)
> ++{
> ++  /* Round the stack up to a multiple of the stack alignment requirement.
> */
> ++  cif->bytes =
> ++    (cif->bytes + (AARCH64_STACK_ALIGN - 1)) & ~
> (AARCH64_STACK_ALIGN - 1);
> ++
> ++  /* Initialize our flags. We are interested if this CIF will touch a
> ++     vector register, if so we will enable context save and load to
> ++     those registers, otherwise not. This is intended to be friendly
> ++     to lazy float context switching in the kernel.  */
> ++  cif->aarch64_flags = 0;
> ++
> ++  if (is_v_register_candidate (cif->rtype))
> ++    {
> ++      cif->aarch64_flags |= AARCH64_FFI_WITH_V;
> ++    }
> ++  else
> ++    {
> ++      int i;
> ++      for (i = 0; i < cif->nargs; i++)
> ++        if (is_v_register_candidate (cif->arg_types[i]))
> ++          {
> ++            cif->aarch64_flags |= AARCH64_FFI_WITH_V;
> ++            break;
> ++          }
> ++    }
> ++
> ++  return FFI_OK;
> ++}
> ++
> ++#if defined (__APPLE__)
> ++
> ++/* Perform Apple-specific cif processing for variadic calls */
> ++ffi_status ffi_prep_cif_machdep_var(ffi_cif *cif,
> ++				    unsigned int nfixedargs,
> ++				    unsigned int ntotalargs)
> ++{
> ++  cif->aarch64_nfixedargs = nfixedargs;
> ++
> ++  return ffi_prep_cif_machdep(cif);
> ++}
> ++
> ++#endif
> ++
> ++/* Call a function with the provided arguments and capture the return
> ++   value.  */
> ++void
> ++ffi_call (ffi_cif *cif, void (*fn)(void), void *rvalue, void **avalue)
> ++{
> ++  extended_cif ecif;
> ++
> ++  ecif.cif = cif;
> ++  ecif.avalue = avalue;
> ++  ecif.rvalue = rvalue;
> ++
> ++  switch (cif->abi)
> ++    {
> ++    case FFI_SYSV:
> ++      {
> ++        struct call_context context;
> ++	size_t stack_bytes;
> ++
> ++	/* Figure out the total amount of stack space we need, the
> ++	   above call frame space needs to be 16 bytes aligned to
> ++	   ensure correct alignment of the first object inserted in
> ++	   that space hence the ALIGN applied to cif->bytes.*/
> ++	stack_bytes = ALIGN(cif->bytes, 16);
> ++
> ++	memset (&context, 0, sizeof (context));
> ++        if (is_register_candidate (cif->rtype))
> ++          {
> ++            ffi_call_SYSV (aarch64_prep_args, &context, &ecif, stack_bytes, fn);
> ++            switch (cif->rtype->type)
> ++              {
> ++              case FFI_TYPE_VOID:
> ++              case FFI_TYPE_FLOAT:
> ++              case FFI_TYPE_DOUBLE:
> ++#if FFI_TYPE_DOUBLE != FFI_TYPE_LONGDOUBLE
> ++              case FFI_TYPE_LONGDOUBLE:
> ++#endif
> ++              case FFI_TYPE_UINT8:
> ++              case FFI_TYPE_SINT8:
> ++              case FFI_TYPE_UINT16:
> ++              case FFI_TYPE_SINT16:
> ++              case FFI_TYPE_UINT32:
> ++              case FFI_TYPE_SINT32:
> ++              case FFI_TYPE_POINTER:
> ++              case FFI_TYPE_UINT64:
> ++              case FFI_TYPE_INT:
> ++              case FFI_TYPE_SINT64:
> ++		{
> ++		  void *addr = get_basic_type_addr (cif->rtype->type,
> ++						    &context, 0);
> ++		  copy_basic_type (rvalue, addr, cif->rtype->type);
> ++		  break;
> ++		}
> ++
> ++              case FFI_TYPE_STRUCT:
> ++                if (is_hfa (cif->rtype))
> ++		  {
> ++		    int j;
> ++		    unsigned short type = get_homogeneous_type (cif-
> >rtype);
> ++		    unsigned elems = element_count (cif->rtype);
> ++		    for (j = 0; j < elems; j++)
> ++		      {
> ++			void *reg = get_basic_type_addr (type, &context, j);
> ++			copy_basic_type (rvalue, reg, type);
> ++			rvalue += get_basic_type_size (type);
> ++		      }
> ++		  }
> ++                else if ((cif->rtype->size + 7) / 8 < N_X_ARG_REG)
> ++                  {
> ++                    size_t size = ALIGN (cif->rtype->size, sizeof (UINT64));
> ++                    memcpy (rvalue, get_x_addr (&context, 0), size);
> ++                  }
> ++                else
> ++                  {
> ++                    FFI_ASSERT (0);
> ++                  }
> ++                break;
> ++
> ++              default:
> ++                FFI_ASSERT (0);
> ++                break;
> ++              }
> ++          }
> ++        else
> ++          {
> ++            memcpy (get_x_addr (&context, 8), &rvalue, sizeof (UINT64));
> ++            ffi_call_SYSV (aarch64_prep_args, &context, &ecif,
> ++			   stack_bytes, fn);
> ++          }
> ++        break;
> ++      }
> ++
> ++    default:
> ++      FFI_ASSERT (0);
> ++      break;
> ++    }
> ++}
> ++
> ++static unsigned char trampoline [] =
> ++{ 0x70, 0x00, 0x00, 0x58,	/* ldr	x16, 1f	*/
> ++  0x91, 0x00, 0x00, 0x10,	/* adr	x17, 2f	*/
> ++  0x00, 0x02, 0x1f, 0xd6	/* br	x16	*/
> ++};
> ++
> ++/* Build a trampoline.  */
> ++
> ++#define FFI_INIT_TRAMPOLINE(TRAMP,FUN,CTX,FLAGS)
> 	\
> ++  ({unsigned char *__tramp = (unsigned char*)(TRAMP);
> 	\
> ++    UINT64  __fun = (UINT64)(FUN);					\
> ++    UINT64  __ctx = (UINT64)(CTX);					\
> ++    UINT64  __flags = (UINT64)(FLAGS);
> 	\
> ++    memcpy (__tramp, trampoline, sizeof (trampoline));
> 	\
> ++    memcpy (__tramp + 12, &__fun, sizeof (__fun));			\
> ++    memcpy (__tramp + 20, &__ctx, sizeof (__ctx));			\
> ++    memcpy (__tramp + 28, &__flags, sizeof (__flags));
> 	\
> ++    ffi_clear_cache(__tramp, __tramp + FFI_TRAMPOLINE_SIZE);
> 	\
> ++  })
> ++
> ++ffi_status
> ++ffi_prep_closure_loc (ffi_closure* closure,
> ++                      ffi_cif* cif,
> ++                      void (*fun)(ffi_cif*,void*,void**,void*),
> ++                      void *user_data,
> ++                      void *codeloc)
> ++{
> ++  if (cif->abi != FFI_SYSV)
> ++    return FFI_BAD_ABI;
> ++
> ++  FFI_INIT_TRAMPOLINE (&closure->tramp[0], &ffi_closure_SYSV, codeloc,
> ++		       cif->aarch64_flags);
> ++
> ++  closure->cif  = cif;
> ++  closure->user_data = user_data;
> ++  closure->fun  = fun;
> ++
> ++  return FFI_OK;
> ++}
> ++
> ++/* Primary handler to setup and invoke a function within a closure.
> ++
> ++   A closure when invoked enters via the assembler wrapper
> ++   ffi_closure_SYSV(). The wrapper allocates a call context on the
> ++   stack, saves the interesting registers (from the perspective of
> ++   the calling convention) into the context then passes control to
> ++   ffi_closure_SYSV_inner() passing the saved context and a pointer to
> ++   the stack at the point ffi_closure_SYSV() was invoked.
> ++
> ++   On the return path the assembler wrapper will reload call context
> ++   registers.
> ++
> ++   ffi_closure_SYSV_inner() marshalls the call context into ffi value
> ++   descriptors, invokes the wrapped function, then marshalls the return
> ++   value back into the call context.  */
> ++
> ++void FFI_HIDDEN
> ++ffi_closure_SYSV_inner (ffi_closure *closure, struct call_context *context,
> ++			void *stack)
> ++{
> ++  ffi_cif *cif = closure->cif;
> ++  void **avalue = (void**) alloca (cif->nargs * sizeof (void*));
> ++  void *rvalue = NULL;
> ++  int i;
> ++  struct arg_state state;
> ++
> ++  arg_init (&state, ALIGN(cif->bytes, 16));
> ++
> ++  for (i = 0; i < cif->nargs; i++)
> ++    {
> ++      ffi_type *ty = cif->arg_types[i];
> ++
> ++      switch (ty->type)
> ++	{
> ++	case FFI_TYPE_VOID:
> ++	  FFI_ASSERT (0);
> ++	  break;
> ++
> ++	case FFI_TYPE_UINT8:
> ++	case FFI_TYPE_SINT8:
> ++	case FFI_TYPE_UINT16:
> ++	case FFI_TYPE_SINT16:
> ++	case FFI_TYPE_UINT32:
> ++	case FFI_TYPE_SINT32:
> ++	case FFI_TYPE_INT:
> ++	case FFI_TYPE_POINTER:
> ++	case FFI_TYPE_UINT64:
> ++	case FFI_TYPE_SINT64:
> ++	case  FFI_TYPE_FLOAT:
> ++	case  FFI_TYPE_DOUBLE:
> ++#if FFI_TYPE_DOUBLE != FFI_TYPE_LONGDOUBLE
> ++	case  FFI_TYPE_LONGDOUBLE:
> ++	  avalue[i] = allocate_to_register_or_stack (context, stack,
> ++						     &state, ty->type);
> ++	  break;
> ++#endif
> ++
> ++	case FFI_TYPE_STRUCT:
> ++	  if (is_hfa (ty))
> ++	    {
> ++	      unsigned n = element_count (ty);
> ++	      if (available_v (&state) < n)
> ++		{
> ++		  state.nsrn = N_V_ARG_REG;
> ++		  avalue[i] = allocate_to_stack (&state, stack, ty->alignment,
> ++						 ty->size);
> ++		}
> ++	      else
> ++		{
> ++		  switch (get_homogeneous_type (ty))
> ++		    {
> ++		    case FFI_TYPE_FLOAT:
> ++		      {
> ++			/* Eeek! We need a pointer to the structure,
> ++			   however the homogeneous float elements are
> ++			   being passed in individual S registers,
> ++			   therefore the structure is not represented as
> ++			   a contiguous sequence of bytes in our saved
> ++			   register context. We need to fake up a copy
> ++			   of the structure laid out in memory
> ++			   correctly. The fake can be tossed once the
> ++			   closure function has returned hence alloca()
> ++			   is sufficient. */
> ++			int j;
> ++			UINT32 *p = avalue[i] = alloca (ty->size);
> ++			for (j = 0; j < element_count (ty); j++)
> ++			  memcpy (&p[j],
> ++				  allocate_to_s (context, &state),
> ++				  sizeof (*p));
> ++			break;
> ++		      }
> ++
> ++		    case FFI_TYPE_DOUBLE:
> ++		      {
> ++			/* Eeek! We need a pointer to the structure,
> ++			   however the homogeneous float elements are
> ++			   being passed in individual S registers,
> ++			   therefore the structure is not represented as
> ++			   a contiguous sequence of bytes in our saved
> ++			   register context. We need to fake up a copy
> ++			   of the structure laid out in memory
> ++			   correctly. The fake can be tossed once the
> ++			   closure function has returned hence alloca()
> ++			   is sufficient. */
> ++			int j;
> ++			UINT64 *p = avalue[i] = alloca (ty->size);
> ++			for (j = 0; j < element_count (ty); j++)
> ++			  memcpy (&p[j],
> ++				  allocate_to_d (context, &state),
> ++				  sizeof (*p));
> ++			break;
> ++		      }
> ++
> ++#if FFI_TYPE_DOUBLE != FFI_TYPE_LONGDOUBLE
> ++		    case FFI_TYPE_LONGDOUBLE:
> ++			  memcpy (&avalue[i],
> ++				  allocate_to_v (context, &state),
> ++				  sizeof (*avalue));
> ++		      break;
> ++#endif
> ++
> ++		    default:
> ++		      FFI_ASSERT (0);
> ++		      break;
> ++		    }
> ++		}
> ++	    }
> ++	  else if (ty->size > 16)
> ++	    {
> ++	      /* Replace Composite type of size greater than 16 with a
> ++		 pointer.  */
> ++	      memcpy (&avalue[i],
> ++		      allocate_to_register_or_stack (context, stack,
> ++						     &state,
> FFI_TYPE_POINTER),
> ++		      sizeof (avalue[i]));
> ++	    }
> ++	  else if (available_x (&state) >= (ty->size + 7) / 8)
> ++	    {
> ++	      avalue[i] = get_x_addr (context, state.ngrn);
> ++	      state.ngrn += (ty->size + 7) / 8;
> ++	    }
> ++	  else
> ++	    {
> ++	      state.ngrn = N_X_ARG_REG;
> ++
> ++	      avalue[i] = allocate_to_stack (&state, stack, ty->alignment,
> ++					     ty->size);
> ++	    }
> ++	  break;
> ++
> ++	default:
> ++	  FFI_ASSERT (0);
> ++	  break;
> ++	}
> ++    }
> ++
> ++  /* Figure out where the return value will be passed, either in
> ++     registers or in a memory block allocated by the caller and passed
> ++     in x8.  */
> ++
> ++  if (is_register_candidate (cif->rtype))
> ++    {
> ++      /* Register candidates are *always* returned in registers. */
> ++
> ++      /* Allocate a scratchpad for the return value, we will let the
> ++         callee scrible the result into the scratch pad then move the
> ++         contents into the appropriate return value location for the
> ++         call convention.  */
> ++      rvalue = alloca (cif->rtype->size);
> ++      (closure->fun) (cif, rvalue, avalue, closure->user_data);
> ++
> ++      /* Copy the return value into the call context so that it is returned
> ++         as expected to our caller.  */
> ++      switch (cif->rtype->type)
> ++        {
> ++        case FFI_TYPE_VOID:
> ++          break;
> ++
> ++        case FFI_TYPE_UINT8:
> ++        case FFI_TYPE_UINT16:
> ++        case FFI_TYPE_UINT32:
> ++        case FFI_TYPE_POINTER:
> ++        case FFI_TYPE_UINT64:
> ++        case FFI_TYPE_SINT8:
> ++        case FFI_TYPE_SINT16:
> ++        case FFI_TYPE_INT:
> ++        case FFI_TYPE_SINT32:
> ++        case FFI_TYPE_SINT64:
> ++        case FFI_TYPE_FLOAT:
> ++        case FFI_TYPE_DOUBLE:
> ++#if FFI_TYPE_DOUBLE != FFI_TYPE_LONGDOUBLE
> ++        case FFI_TYPE_LONGDOUBLE:
> ++#endif
> ++	  {
> ++	    void *addr = get_basic_type_addr (cif->rtype->type, context, 0);
> ++	    copy_basic_type (addr, rvalue, cif->rtype->type);
> ++            break;
> ++	  }
> ++        case FFI_TYPE_STRUCT:
> ++          if (is_hfa (cif->rtype))
> ++	    {
> ++	      int j;
> ++	      unsigned short type = get_homogeneous_type (cif->rtype);
> ++	      unsigned elems = element_count (cif->rtype);
> ++	      for (j = 0; j < elems; j++)
> ++		{
> ++		  void *reg = get_basic_type_addr (type, context, j);
> ++		  copy_basic_type (reg, rvalue, type);
> ++		  rvalue += get_basic_type_size (type);
> ++		}
> ++	    }
> ++          else if ((cif->rtype->size + 7) / 8 < N_X_ARG_REG)
> ++            {
> ++              size_t size = ALIGN (cif->rtype->size, sizeof (UINT64)) ;
> ++              memcpy (get_x_addr (context, 0), rvalue, size);
> ++            }
> ++          else
> ++            {
> ++              FFI_ASSERT (0);
> ++            }
> ++          break;
> ++        default:
> ++          FFI_ASSERT (0);
> ++          break;
> ++        }
> ++    }
> ++  else
> ++    {
> ++      memcpy (&rvalue, get_x_addr (context, 8), sizeof (UINT64));
> ++      (closure->fun) (cif, rvalue, avalue, closure->user_data);
> ++    }
> ++}
> ++
> +diff -ruN Python-2.7.3.orig/Modules/_ctypes/libffi/src/aarch64/ffitarget.h
> Python-2.7.3/Modules/_ctypes/libffi/src/aarch64/ffitarget.h
> +--- Python-2.7.3.orig/Modules/_ctypes/libffi/src/aarch64/ffitarget.h	1970-
> 01-01 01:00:00.000000000 +0100
> ++++ Python-2.7.3/Modules/_ctypes/libffi/src/aarch64/ffitarget.h	2014-
> 04-25 19:45:13.000000000 +0200
> +@@ -0,0 +1,63 @@
> ++/* Copyright (c) 2009, 2010, 2011, 2012 ARM Ltd.
> ++
> ++Permission is hereby granted, free of charge, to any person obtaining
> ++a copy of this software and associated documentation files (the
> ++``Software''), to deal in the Software without restriction, including
> ++without limitation the rights to use, copy, modify, merge, publish,
> ++distribute, sublicense, and/or sell copies of the Software, and to
> ++permit persons to whom the Software is furnished to do so, subject to
> ++the following conditions:
> ++
> ++The above copyright notice and this permission notice shall be
> ++included in all copies or substantial portions of the Software.
> ++
> ++THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
> ++EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
> OF
> ++MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
> NONINFRINGEMENT.
> ++IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
> ANY
> ++CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
> CONTRACT,
> ++TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH
> THE
> ++SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.  */
> ++
> ++#ifndef LIBFFI_TARGET_H
> ++#define LIBFFI_TARGET_H
> ++
> ++#ifndef LIBFFI_H
> ++#error "Please do not include ffitarget.h directly into your source.  Use
> ffi.h instead."
> ++#endif
> ++
> ++#ifndef LIBFFI_ASM
> ++typedef unsigned long ffi_arg;
> ++typedef signed long ffi_sarg;
> ++
> ++typedef enum ffi_abi
> ++  {
> ++    FFI_FIRST_ABI = 0,
> ++    FFI_SYSV,
> ++    FFI_LAST_ABI,
> ++    FFI_DEFAULT_ABI = FFI_SYSV
> ++  } ffi_abi;
> ++#endif
> ++
> ++/* ---- Definitions for closures ----------------------------------------- */
> ++
> ++#define FFI_CLOSURES 1
> ++#define FFI_TRAMPOLINE_SIZE 36
> ++#define FFI_NATIVE_RAW_API 0
> ++
> ++/* ---- Internal ---- */
> ++
> ++#if defined (__APPLE__)
> ++#define FFI_TARGET_SPECIFIC_VARIADIC
> ++#define FFI_EXTRA_CIF_FIELDS unsigned aarch64_flags; unsigned
> aarch64_nfixedargs
> ++#else
> ++#define FFI_EXTRA_CIF_FIELDS unsigned aarch64_flags
> ++#endif
> ++
> ++#define AARCH64_FFI_WITH_V_BIT 0
> ++
> ++#define AARCH64_N_XREG 32
> ++#define AARCH64_N_VREG 32
> ++#define AARCH64_CALL_CONTEXT_SIZE (AARCH64_N_XREG * 8 +
> AARCH64_N_VREG * 16)
> ++
> ++#endif
> +diff -ruN Python-2.7.3.orig/Modules/_ctypes/libffi/src/aarch64/sysv.S
> Python-2.7.3/Modules/_ctypes/libffi/src/aarch64/sysv.S
> +--- Python-2.7.3.orig/Modules/_ctypes/libffi/src/aarch64/sysv.S	1970-
> 01-01 01:00:00.000000000 +0100
> ++++ Python-2.7.3/Modules/_ctypes/libffi/src/aarch64/sysv.S	2014-04-25
> 19:45:13.000000000 +0200
> +@@ -0,0 +1,333 @@
> ++/* Copyright (c) 2009, 2010, 2011, 2012 ARM Ltd.
> ++
> ++Permission is hereby granted, free of charge, to any person obtaining
> ++a copy of this software and associated documentation files (the
> ++``Software''), to deal in the Software without restriction, including
> ++without limitation the rights to use, copy, modify, merge, publish,
> ++distribute, sublicense, and/or sell copies of the Software, and to
> ++permit persons to whom the Software is furnished to do so, subject to
> ++the following conditions:
> ++
> ++The above copyright notice and this permission notice shall be
> ++included in all copies or substantial portions of the Software.
> ++
> ++THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
> ++EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
> OF
> ++MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
> NONINFRINGEMENT.
> ++IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
> ANY
> ++CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
> CONTRACT,
> ++TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH
> THE
> ++SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.  */
> ++
> ++#define LIBFFI_ASM
> ++#include <fficonfig.h>
> ++#include <ffi.h>
> ++
> ++#ifdef HAVE_MACHINE_ASM_H
> ++#include <machine/asm.h>
> ++#else
> ++#ifdef __USER_LABEL_PREFIX__
> ++#define CONCAT1(a, b) CONCAT2(a, b)
> ++#define CONCAT2(a, b) a ## b
> ++
> ++/* Use the right prefix for global labels.  */
> ++#define CNAME(x) CONCAT1 (__USER_LABEL_PREFIX__, x)
> ++#else
> ++#define CNAME(x) x
> ++#endif
> ++#endif
> ++
> ++#define cfi_adjust_cfa_offset(off)	.cfi_adjust_cfa_offset off
> ++#define cfi_rel_offset(reg, off)	.cfi_rel_offset reg, off
> ++#define cfi_restore(reg)		.cfi_restore reg
> ++#define cfi_def_cfa_register(reg)	.cfi_def_cfa_register reg
> ++
> ++        .text
> ++        .globl CNAME(ffi_call_SYSV)
> ++#ifdef __ELF__
> ++        .type CNAME(ffi_call_SYSV), #function
> ++#endif
> ++#ifdef __APPLE__
> ++        .align 2
> ++#endif
> ++
> ++/* ffi_call_SYSV()
> ++
> ++   Create a stack frame, setup an argument context, call the callee
> ++   and extract the result.
> ++
> ++   The maximum required argument stack size is provided,
> ++   ffi_call_SYSV() allocates that stack space then calls the
> ++   prepare_fn to populate register context and stack.  The
> ++   argument passing registers are loaded from the register
> ++   context and the callee called, on return the register passing
> ++   register are saved back to the context.  Our caller will
> ++   extract the return value from the final state of the saved
> ++   register context.
> ++
> ++   Prototype:
> ++
> ++   extern unsigned
> ++   ffi_call_SYSV (void (*)(struct call_context *context, unsigned char *,
> ++			   extended_cif *),
> ++                  struct call_context *context,
> ++                  extended_cif *,
> ++                  size_t required_stack_size,
> ++                  void (*fn)(void));
> ++
> ++   Therefore on entry we have:
> ++
> ++   x0 prepare_fn
> ++   x1 &context
> ++   x2 &ecif
> ++   x3 bytes
> ++   x4 fn
> ++
> ++   This function uses the following stack frame layout:
> ++
> ++   ==
> ++                saved x30(lr)
> ++   x29(fp)->    saved x29(fp)
> ++                saved x24
> ++                saved x23
> ++                saved x22
> ++   sp'    ->    saved x21
> ++                ...
> ++   sp     ->    (constructed callee stack arguments)
> ++   ==
> ++
> ++   Voila! */
> ++
> ++#define ffi_call_SYSV_FS (8 * 4)
> ++
> ++        .cfi_startproc
> ++CNAME(ffi_call_SYSV):
> ++        stp     x29, x30, [sp, #-16]!
> ++	cfi_adjust_cfa_offset (16)
> ++        cfi_rel_offset (x29, 0)
> ++        cfi_rel_offset (x30, 8)
> ++
> ++        mov     x29, sp
> ++	cfi_def_cfa_register (x29)
> ++        sub     sp, sp, #ffi_call_SYSV_FS
> ++
> ++        stp     x21, x22, [sp, #0]
> ++        cfi_rel_offset (x21, 0 - ffi_call_SYSV_FS)
> ++        cfi_rel_offset (x22, 8 - ffi_call_SYSV_FS)
> ++
> ++        stp     x23, x24, [sp, #16]
> ++        cfi_rel_offset (x23, 16 - ffi_call_SYSV_FS)
> ++        cfi_rel_offset (x24, 24 - ffi_call_SYSV_FS)
> ++
> ++        mov     x21, x1
> ++        mov     x22, x2
> ++        mov     x24, x4
> ++
> ++        /* Allocate the stack space for the actual arguments, many
> ++           arguments will be passed in registers, but we assume
> ++           worst case and allocate sufficient stack for ALL of
> ++           the arguments.  */
> ++        sub     sp, sp, x3
> ++
> ++        /* unsigned (*prepare_fn) (struct call_context *context,
> ++				   unsigned char *stack, extended_cif *ecif);
> ++	 */
> ++        mov     x23, x0
> ++        mov     x0, x1
> ++        mov     x1, sp
> ++        /* x2 already in place */
> ++        blr     x23
> ++
> ++        /* Preserve the flags returned.  */
> ++        mov     x23, x0
> ++
> ++        /* Figure out if we should touch the vector registers.  */
> ++        tbz     x23, #AARCH64_FFI_WITH_V_BIT, 1f
> ++
> ++        /* Load the vector argument passing registers.  */
> ++        ldp     q0, q1, [x21, #8*32 +  0]
> ++        ldp     q2, q3, [x21, #8*32 + 32]
> ++        ldp     q4, q5, [x21, #8*32 + 64]
> ++        ldp     q6, q7, [x21, #8*32 + 96]
> ++1:
> ++        /* Load the core argument passing registers.  */
> ++        ldp     x0, x1, [x21,  #0]
> ++        ldp     x2, x3, [x21, #16]
> ++        ldp     x4, x5, [x21, #32]
> ++        ldp     x6, x7, [x21, #48]
> ++
> ++        /* Don't forget x8 which may be holding the address of a return
> buffer.
> ++	 */
> ++        ldr     x8,     [x21, #8*8]
> ++
> ++        blr     x24
> ++
> ++        /* Save the core argument passing registers.  */
> ++        stp     x0, x1, [x21,  #0]
> ++        stp     x2, x3, [x21, #16]
> ++        stp     x4, x5, [x21, #32]
> ++        stp     x6, x7, [x21, #48]
> ++
> ++        /* Note nothing useful ever comes back in x8!  */
> ++
> ++        /* Figure out if we should touch the vector registers.  */
> ++        tbz     x23, #AARCH64_FFI_WITH_V_BIT, 1f
> ++
> ++        /* Save the vector argument passing registers.  */
> ++        stp     q0, q1, [x21, #8*32 + 0]
> ++        stp     q2, q3, [x21, #8*32 + 32]
> ++        stp     q4, q5, [x21, #8*32 + 64]
> ++        stp     q6, q7, [x21, #8*32 + 96]
> ++1:
> ++        /* All done, unwind our stack frame.  */
> ++        ldp     x21, x22, [x29,  # - ffi_call_SYSV_FS]
> ++        cfi_restore (x21)
> ++        cfi_restore (x22)
> ++
> ++        ldp     x23, x24, [x29,  # - ffi_call_SYSV_FS + 16]
> ++        cfi_restore (x23)
> ++        cfi_restore (x24)
> ++
> ++        mov     sp, x29
> ++	cfi_def_cfa_register (sp)
> ++
> ++        ldp     x29, x30, [sp], #16
> ++	cfi_adjust_cfa_offset (-16)
> ++        cfi_restore (x29)
> ++        cfi_restore (x30)
> ++
> ++        ret
> ++
> ++        .cfi_endproc
> ++#ifdef __ELF__
> ++        .size CNAME(ffi_call_SYSV), .-CNAME(ffi_call_SYSV)
> ++#endif
> ++
> ++#define ffi_closure_SYSV_FS (8 * 2 + AARCH64_CALL_CONTEXT_SIZE)
> ++
> ++/* ffi_closure_SYSV
> ++
> ++   Closure invocation glue. This is the low level code invoked directly by
> ++   the closure trampoline to setup and call a closure.
> ++
> ++   On entry x17 points to a struct trampoline_data, x16 has been clobbered
> ++   all other registers are preserved.
> ++
> ++   We allocate a call context and save the argument passing registers,
> ++   then invoked the generic C ffi_closure_SYSV_inner() function to do all
> ++   the real work, on return we load the result passing registers back from
> ++   the call context.
> ++
> ++   On entry
> ++
> ++   extern void
> ++   ffi_closure_SYSV (struct trampoline_data *);
> ++
> ++   struct trampoline_data
> ++   {
> ++        UINT64 *ffi_closure;
> ++        UINT64 flags;
> ++   };
> ++
> ++   This function uses the following stack frame layout:
> ++
> ++   ==
> ++                saved x30(lr)
> ++   x29(fp)->    saved x29(fp)
> ++                saved x22
> ++                saved x21
> ++                ...
> ++   sp     ->    call_context
> ++   ==
> ++
> ++   Voila!  */
> ++
> ++        .text
> ++        .globl CNAME(ffi_closure_SYSV)
> ++#ifdef __APPLE__
> ++        .align 2
> ++#endif
> ++        .cfi_startproc
> ++CNAME(ffi_closure_SYSV):
> ++        stp     x29, x30, [sp, #-16]!
> ++	cfi_adjust_cfa_offset (16)
> ++        cfi_rel_offset (x29, 0)
> ++        cfi_rel_offset (x30, 8)
> ++
> ++        mov     x29, sp
> ++        cfi_def_cfa_register (x29)
> ++
> ++        sub     sp, sp, #ffi_closure_SYSV_FS
> ++
> ++        stp     x21, x22, [x29, #-16]
> ++        cfi_rel_offset (x21, -16)
> ++        cfi_rel_offset (x22, -8)
> ++
> ++        /* Load x21 with &call_context.  */
> ++        mov     x21, sp
> ++        /* Preserve our struct trampoline_data *  */
> ++        mov     x22, x17
> ++
> ++        /* Save the rest of the argument passing registers.  */
> ++        stp     x0, x1, [x21, #0]
> ++        stp     x2, x3, [x21, #16]
> ++        stp     x4, x5, [x21, #32]
> ++        stp     x6, x7, [x21, #48]
> ++        /* Don't forget we may have been given a result scratch pad address.
> ++	 */
> ++        str     x8,     [x21, #64]
> ++
> ++        /* Figure out if we should touch the vector registers.  */
> ++        ldr     x0, [x22, #8]
> ++        tbz     x0, #AARCH64_FFI_WITH_V_BIT, 1f
> ++
> ++        /* Save the argument passing vector registers.  */
> ++        stp     q0, q1, [x21, #8*32 + 0]
> ++        stp     q2, q3, [x21, #8*32 + 32]
> ++        stp     q4, q5, [x21, #8*32 + 64]
> ++        stp     q6, q7, [x21, #8*32 + 96]
> ++1:
> ++        /* Load &ffi_closure..  */
> ++        ldr     x0, [x22, #0]
> ++        mov     x1, x21
> ++        /* Compute the location of the stack at the point that the
> ++           trampoline was called.  */
> ++        add     x2, x29, #16
> ++
> ++        bl      CNAME(ffi_closure_SYSV_inner)
> ++
> ++        /* Figure out if we should touch the vector registers.  */
> ++        ldr     x0, [x22, #8]
> ++        tbz     x0, #AARCH64_FFI_WITH_V_BIT, 1f
> ++
> ++        /* Load the result passing vector registers.  */
> ++        ldp     q0, q1, [x21, #8*32 + 0]
> ++        ldp     q2, q3, [x21, #8*32 + 32]
> ++        ldp     q4, q5, [x21, #8*32 + 64]
> ++        ldp     q6, q7, [x21, #8*32 + 96]
> ++1:
> ++        /* Load the result passing core registers.  */
> ++        ldp     x0, x1, [x21,  #0]
> ++        ldp     x2, x3, [x21, #16]
> ++        ldp     x4, x5, [x21, #32]
> ++        ldp     x6, x7, [x21, #48]
> ++        /* Note nothing useful is returned in x8.  */
> ++
> ++        /* We are done, unwind our frame.  */
> ++        ldp     x21, x22, [x29,  #-16]
> ++        cfi_restore (x21)
> ++        cfi_restore (x22)
> ++
> ++        mov     sp, x29
> ++        cfi_def_cfa_register (sp)
> ++
> ++        ldp     x29, x30, [sp], #16
> ++	cfi_adjust_cfa_offset (-16)
> ++        cfi_restore (x29)
> ++        cfi_restore (x30)
> ++
> ++        ret
> ++        .cfi_endproc
> ++#ifdef __ELF__
> ++        .size CNAME(ffi_closure_SYSV), .-CNAME(ffi_closure_SYSV)
> ++#endif
> diff --git a/meta/recipes-devtools/python/python_2.7.3.bb b/meta/recipes-
> devtools/python/python_2.7.3.bb
> index cbe8d7f..de1f57f 100644
> --- a/meta/recipes-devtools/python/python_2.7.3.bb
> +++ b/meta/recipes-devtools/python/python_2.7.3.bb
> @@ -40,6 +40,8 @@ SRC_URI += "\
>    file://posix_close.patch \
>    file://python-2.7.3-CVE-2014-7185.patch \
>    file://python2.7.3-nossl3.patch \
> +  file://ctypes-libffi-aarch64.patch \
> +  file://libffi-aarch64.patch \
>  "
> 
>  S = "${WORKDIR}/Python-${PV}"
> --
> 1.9.1




More information about the Openembedded-core mailing list